
Amélie IRQ handler
Preliminary specification - 2006/11/12

Introduction
The IRQ system is one of the primary parts of Amélie. It is, by necessity, the main point of
responsiveness of the system.

Amélie'sBIOS works using a vectored approach. Upon certain conditions happening, some actions will
be performed, and then a vector will be called. The vector locations are held in RAM, at the end of
Page Zero.

By default, the vectors point to one of:

* Ignore code
This is simply code that returns to the caller. Obviously, multiple vectors may point to this
code.

* Cancel code
This code reads or writes to the hardware for the effect of clearing the hardware. The event
itself is discarded.

It is intended that the application code will replace the vector pointers to its own code.

RESETs and NMIs
The RESET handler points to reset-specific code which always causes a full reset. The use of the BRK
instruction is not supported within Amélie.

Amélie makes no use of NMIs, so the hardware NMI vector calls a software vector, which by default
calls the RESET vector. The implication is to force a reset upon an NMI as it is supposed to be held
inactive (via a link); yet allowing for the possibility of NMIs in the future...

As for the IRQ handling, here goes with the pseudo-code:

IRQs
The IRQ handler has to intercept interrupts from two sources - the versatile interrupt adapter (VIA),
and the asynchronous communications interface adaptor (ACIA).

The ACIA deals with serial communications to and from a host computer. The BIOS offers interrupt-
driven serial handling; the application code need only push data to a buffer and await the BIOS having
sent the data. Thus, the BIOS will usually handle the serial system by itself.

The VIA provides two functions. The first function is a system timer that is triggered 50 times a
second. This provides an accurate time reference for the system, as it runs independently off of the
2MHz system clock. The second function provided is two 8 bit ports which can be either inputs or
outputs. Because these are part of the "open specification" nature of Amélie, once the interrupt handler
knows that the interrupt was not the 50Hz ticker, it will call a vector. By way of example, RickBot will
use port A for sensor inputs and an IIC bus, and port B for motor control.

AMIRQ.WRD Page 1 of 5 2006/11/12, 15:20 CET



Amélie IRQ handling - preliminary

.IRQ handler
The processor is directed here upon an IRQ occurring. PSR, A, X, and Y are stacked, in that order.
Generally, each IRQ call will take one path through the code and will unstack and RTI as soon as
possible. Multiple simultaneous interrupts will require multiple IRQ calls.

* Processor status & registers are stacked.

* Call the IRQENTRY vector.
This is for if you wish to completely replace the internal IRQ system, or to pick up on a specific
interrupt early.

* Check VIA status flag.
If a VIA interrupt, go to VIAIRQ code. This code returns itself.

* Check ACIA status flag.
If an ACIA interrupt, go to ACIAIRQ code. This code returns itself.

* Call IRQUNKNOWN vector.

* Processor status and registers restored, then return from interrupt.

.VIAIRQ
This is called as soon as we have narrowed the IRQ to being from the VIA. We first check to see if the
50Hz ticker caused the event. If it did, then we handle the system tick functions. Otherwise, we call a
vector to which VIA code should be attached.

* Examine flags - was it the 50Hz ticker?
If so, go to TICKER handler. This returns itself.

* If not, call VIAIRQ vector, which should return itself.

.ACIAIRQ
This is called upon narrowing the IRQ down to having originated in the ACIA. We call a vector which,
normally, points to the BIOS serial handler.

* Call ACIAIRQ vector.

.TICKER
This is called, by a 2ms timeout on the VIA (40,000 clock ticks) 50 times per second. It provides the
internal timing facilities for the watchdog and for the automatic LED blinking.

* Decrement 50Hz ticker byte.
If 50Hz ticker byte is zero:

* Reset ticker byte to 49.

* Decrement watchdog byte.
We do not check watchdog here...

* Increment system second count.
If second = 60, call TIMEPATCHUP code.

AMIRQ.WRD Page 2 of 5 2006/11/12, 15:20 CET



Amélie IRQ handling - preliminary

* Call LEDFLASH code.
If watchdog byte is zero, call the WATCHDOG_CRITICAL handler.

* Restore processor registers/status and then RTI.

.TIMEPATCHUP

This is simply a subroutine to handle "new second", and any cascade patchups that may be required.
Only one flag is maintained, so the vector called (out of "NEWSECOND", "NEWMINUTE", and
"NEWHOUR") is that of the highest precedence. If you receive a "NEWMINUTE" call, you can
assume a "NEWSECOND" also occurred.
You will always receive "TIMEWRAPPED" upon time wrapping, which will be followed by
"NEWHOUR".

* Flag "new second"

* If seconds > 59
minute =+ 1
seconds = 0
Flag "new minute"

* If minute > 59
hour =+ 1
minute = 0
Flag "new hour"

* If hour > 23
hour = 0
Call TIMEWRAPPED vector. [we don't yet handle "days"]

* If flag is "newsecond", call the NEWSECOND vector.
If flag is "newminute", call the NEWMINUTE vector.
If flag is "newhour", call the NEWHOUR vector.

* Restore processor state and registers and RTI.

.LEDFLASH
This code deals with the LED flash functions. In Page Zero are fourteen bytes. The first four contain
the LED state (0=off, 1=on). The next four contain the flash counter, which is decremented every
50Hz tick, and the final four contain the flash reload counter, the value that is reloaded into the flash
counter upon it reaching zero. Following is a byte that represents is zero if no LEDs are in flash state,
1 otherwise; and finally a workspace byte.
If may appear wasteful to have four bytes for the LED state when four bits would suffice. We do it this
way in order that we only need an LDA to get the status of each individual LED. The only time we
mess with bit shifting is for constructing the final bit pattern to send to the latch.
In order to optimise the code, you should use the OS routines to set the flash rates - because otherwise
it will be assumed that the LED status is static and the flash will never occur.
Here is how it works in practice:

* If LEDs are static, return.

* Set LED workspace byte to zero.

AMIRQ.WRD Page 3 of 5 2006/11/12, 15:20 CET



Amélie IRQ handling - preliminary

* If LED1 flash counter is non-zero:
Decrement flash counter.
If flash counter is now zero:
Reload flash value into counter
Invert state of LED
Increment LED workspace byte.

* Ditto for LED2...
...and LED3...
...and LED4.

* If LED workspace byte is not zero (LED state changed), then:
Construct bit pattern of LED state to send to the latch, and then write to hardware.

The LED code supports 6 modes of operation:

0 LED is off

1 LED is on

2 Fast blink LED (12 ticks, or ~1/4 second blink)

3 Medium blink LED (25 ticks, or 1/2 second blink)

4 Slow blink LED (37 ticks, or ~3/4 second blink)

5 Long blink LED (50 ticks, or 1 second blink)

The blink duration given specifies the time for which the LED is either off or on, not the combined
time; thus mode=2 means the LED is off for 12 ticks, on for 12 ticks, etc...
Just for reference, a static LED has a countdown value of zero, so the flash code skips over that LED.

If you wish for custom durations, the way to handle this would be to set a default flash mode, and then
poke your desired duration into the flash reload byte.

.WATCHDOG CRITICAL

The watchdog starts at 255 and counts down at 50Hz. Periodically, the application code should reset
the watchdog value to 255, for if this value ever reaches zero...
The WATCHDOG_CRITICAL vector is called. This vector normally points to code which does the
following:

* VIAIRQ is set to point to "cancel" code.
All VIA lines are set to be outputs.
Zero is written to all VIA lines.
All VIA lines are set to be inputs.

* The serial buffers are cleared and the serial handler ACIAIRQ is redirected to the watchdog
handler.

* All LEDs are set to fast blink.

* UNKNOWNIRQ is set to "ignore" code.
IRQMAIN is also set to "ignore" code.

AMIRQ.WRD Page 4 of 5 2006/11/12, 15:20 CET



Amélie IRQ handling - preliminary

Then a recursive loop is entered, which looks for a newline (ASCII 10) on the serial port, and also
resets the watchdog.
There is no way out of this, except for a system reset.

If you connect a serial cable and press Enter, a number of hex values will be returned. The first value
is the value of the stack pointer, this will be followed by all of the values in the stack. This, hopefully,
will enable you to unwind the code to try to work out what went wrong.
The output will look like:

watchdog> F6 04 02 FF FE 3D 01 FB DE 00

Rick, 2006/11/12
heyrick -at- merseymail -dot- com
http://www.heyrick.co.uk/amelie/

AMIRQ.WRD Page 5 of 5 2006/11/12, 15:20 CET


