
6502asm v0.04

user guide

6502asm user guide – prerelease version

page 1

THIS IS

A PRE-RELEASE VERSION OF

6502ASM
... IT M

AY NOT W
ORK

ENTIRELY CORRECTLY YET.

If you discover errors, please report

them to me!

Introduction

6502asm is a simple assembler for 6502 code. It supports a variety of assembler commands to control output

and extend the 6502 instruction set.

The instruction set provided is the legal NMOS 6502 set, and the CMOS 65C02 instruction set according to

the Western Design Center W65C02S datasheet (not the MOS 65CE02 variant).

The NMOS “undocumented” instructions are not supported.

The command syntax is:

6502asm <input file> <output file>

Purpose

6502asm is part of the Amélie project. It was written in order to allow the BIOS code to be written and

compiled without requiring the use of a BBC microcomputer (or emulator). While it is primarily intended for

this purpose, it is flexible enough to be used for the assembly of 6502 code for other environments, such as

the BBC micro (or compatible) or other 6502-based devices.

6502asm fits in with Amélie’s philosophy of “keep it simple”.

6502asm assembles in two passes, much as code is usually assembled under BBC BASIC. Currently,

6502asm does not support macros or conditional assembly, though these features are “in planning”.

If you are used to Acorn systems, you may be pleased to know that 6502asm considers ‘&’ to mean “this is a

hex number”, which is one of the main reasons I wrote this instead of using one of the many other 6502

assemblers available. If, however, you are not used to Acorn, you can use the Pascal prefix ‘$’ or the C prefix

‘0x’ to denote a hex number.

The DOS-like (an ‘h’ suffix) and the VisualBasic-like (‘$H’ prefix) methods are not supported.

The Amélie project source code uses ‘&’ throughout.

The format of a source file

The source code provided to 6502asm is a plain text file consisting of a number of lines. These lines can be

comments, directives, compiler commands, label definitions, or instructions.

The only thing you must note right from the outset is that the assembler only understands one entity per line.

If, for example, the line is a label, then any code following must begin on the next line. Furthermore, the use

of the colon to write multiple statements on one line is not supported. In difference to the BBC BASIC

assembler, you should use ‘;’ for comments and not ‘\’ or ‘REM’; though the assembler reads only what is

necessary so there is some leeway.

Don’t write code like this: .zeroregs LDX #0 : LDY #0 : LDA #0 : RTS

The assembler will see: .zeroregsldx (a label called “zeroregsldx”)

6502asm user guide – prerelease version

page 2

Don’t write code like this: LDX #0 : LDY #0 : LDA #0 : RTS

The assembler will see: LDX #0 (only the first instruction, the “LDX”)

The source file is always read from the start to the end. It is possible to assemble in any location in the &FFFF

(64K) addressing space at any given time by setting the address with the org command, however overuse of

this can lead to messy code and other complications.

Where execution starts depends on what you are assembling. Typically a program is entered at the beginning

of the code; while a(n) (EP)ROM image is entered at the location of the processor’s reset vector.

The format of a line

There are three types of line:

a. Labels

.<label>

Labels are on a line by themselves, and consist of a period followed by the label name. The names

are unique to forty-seven characters. Label space is allocated as the label is encountered, so there

shouldn’t be any restrictions other than available memory. It is perfectly valid to define multiple

labels at the same location, for example:

 ORG &A000

.via

.via_base

.via_iorb

 DCB 0

After that, any reference to via or via_base or via_iorb will be treated as a reference to &A000.

This is how the memory-mapped hardware is set up in Amélie’s source code. The DCB inserts a

‘dummy byte’ (as only the EPROM code is actually saved). It is a lot tidier to do that than to alter

the address with org for every label we define (the VIA has 16 of them...).

Labels are unique to 47 characters. Anything longer will be truncated.

It is currently possible to define the same label multiple times. If this happens, only the first will

be used when referring to that label.

b. Assembler commands

<command> [<parameters>]

Assembler commands are special commands understood by the assembler. More on these later.

6502asm user guide – prerelease version

page 3

c. Instructions

<opcode> [<parameter>]

Instructions are the usual three letter mnemonics, with optional parameters as necessary.

Comments are introduced using the ‘;’ character. Anything following a semicolon until the end of the line is

ignored. You can include comments at the ends of command lines and instruction lines.

To reiterate: Each line is a separate entity, up to 80 characters long.

 You cannot split commands across lines, nor can you put multiple commands on one line.

The 6502 (instruction set)

The 6502 processor is an 8 bit design from the late ’70s. In its day it was more popular than the Intel

8086/8088; and in many ways was more advanced than the Z80 which was its main competitor. Indeed,

objective tests (running a BBC BASIC interpreter) shows the Z80 clocking at 4MHz to be only about 12%

faster than a 6502 clocking at 2MHz. Later extensions and optimisations (such as those found in the CMOS

variants of the processor) will enhance the effective speed.

With its direct and simplified instruction set, the 6502 has even been described as a forerunner to modern

RISC microprocessors.

It offers two 8 bit ‘index’ registers, though these are fairly general purpose. They are referred to as ‘X’ and

‘Y’. The results of all mathematical operations are placed in the Accumulator, often called ‘A’. The data bus is

8 bits wide.

Instructions are between one and three bytes long.

The address bus (and ‘PC’ (Program Counter) register) is sixteen bits wide with no translation, meaning a

6502 can only directly address 64K of memory. It is possible to extend this with external fiddling. The BBC

Master 128 computer contained 128K accessed via a paging mechanism, and I dimly recall a version with

more than that!

Many popular home computers of the ’80s were built around the 6052; the BBC micro (including the Electron

and Master/Master Compact, and “Acorn Communicator” used in many a travel agent), the Apple II, the

Dragon, the Oric, Commadore’s PET...

The 6502 has three built-in branch points (IRQ, RESet, NMI) in the upper six words of memory (&FFFA to

&FFFF). These are known as the hardware vectors. The first of these is the interrupt handler (and by using the

BRK instruction, you can force an interrupt from software). The second is called when a reset condition

occurs. Finally, the last is the non-maskable interrupt. This differs from the normal IRQ in that you cannot

switch it off and it can occur while handling a normal interrupt. It is used for things that need an extremely

fast response time (in the case of the BBC micro, this was usually Econet and the floppy disc drive). The

Amélie project uses the NMI for a debounced ‘panic’ button which will halt the system regardless of whatever

else is happening (and even if interrupts are disabled).

6502asm user guide – prerelease version

page 4

The hardware stack lives in page one (&0100 to &01FF). Certain operations performed using the zero page

addressing mode (relating to memory locations &0000 to &00FF) operate much more quickly than do the

same instructions applied to any other part of the memory map.

As you can understand, this design dictates that RAM will be at the bottom end of memory and (EP)ROM

will be at the top; though some systems (such as the Acorn FileStores) copy the entire firmware to RAM at

startup, and then page out the ROM entirely. This is because RAM can have a faster access time than

EPROMs...

The 6502 instruction set is well documented on-line.

Briefly:

ADC ADd with Carry CPY ComPare with Y register PLP PulL Processor status from the stack

ADC ADd with Carry DEC DECrement ROL ROtate Left
ASL Aritmetic Shift Left DEX DEcrement X register ROR ROtate Right
BCC Branch if Carry Clear DEY DEcrement Y register RTI ReTurn from Interrupt
BCS Branch if Carry Set EOR logical Exclusive OR RTS ReTurn from Subroutine
BEQ Branch if EQual INC INCrement SBC SuBtract with Carry

BIT test BITs INX INcrement X register SEC SEt Carry
BMI Branch if MInus INY INcrement Y register SED SEt Decimal mode
BNE Branch if Not Equal JMP absolute JuMP SEI SEt Interrupt disable
BPL Branch if PLus JSR absolute Jump to SubRoutine STA STore Accumulator
BRK BReaK LDA LoaD Accumulator STX STore X register

BVC Branch if oVerflow Clear LDX LoaD X register STY STore Y register
BVS Branch if oVerflow Set LDY LoaD Y register TAX Transfer Accumulator to X register
CLC CLear Carry LSR Logical Shift Right TAY Transfer Accumulator to Y register
CLD CLear Decimal mode NOP No OPeration TSX Transfer processor Status to X register
CLI CLear Interrupt disable ORA logical OR (with Accumulator) TXA Transfer X register to Accumulator

CLV CLear oVerflow PHA PusH Accumulator to the stack TXS Transfer X register to processor Status
CMP CoMPare PHP PusH Processor status to the stack TYA Transfer Y register to Accumulator
CPX ComPare with X register PLA PulL Accumulator from the stack

The CMOS version adds:
BBR# Branch if Bit # Reset (clear) BBS# Branch if Bit # Set BRA BRanch Always
PHX PusH X register to the stack PHY PusH Y register to the stack PLX PulL X register from the stack

PLY PulL Y register from the stack RMB# Reset (clear) Memory Bit # SMB# Set Memory Bit #
STP SToP STZ STore Zero (to address specified) TRB Test and Reset memory Bit
TSB Test and Set memory Bit WAI Wait (for interrupt)

For more details, I will refer you to http://www.6502.org/

Within 6502asm, you can enter the instructions in upper case or lower case, as suits you.

For more advanced users, the instruction set recognised is loaded from a file (“opcode.dat”), so you could

alter several of the mnemonics if you desire – for example to ‘correct’ how the processor status register is

called ‘P’ in the stack instructions and ‘S’ in the transfer instructions; or to alias ‘ADD’ and ‘SUB’ to ‘ADC’

and ‘SBC’ respectively...

It will not be possible to include support for the 65CE02 because of major design differences (16 bit stack

pointer, additional addressing modes, a ‘Z’ register...).

The ‘Exx’ instructions at the end (all opcode &xB) are specific to AmélieEm; if you wish to use 6502asm for

other purposes, you can safely remove these instructions.

Note that there is a clash with the instruction &CB. This is used as a breakpoint instruction in AmélieEm, and

it is also the WAI instruction on CMOS processors. This is not seen as a problem as the emulator only

supports the NMOS instruction set.

6502asm user guide – prerelease version

page 5

You could also use the opcode table to implement various “undocumented” instructions that may be found in

the NMOS versions of the 6502, some examples would be:

AXS This ANDs the contents of the X register and the Accumulator and stores the result in

memory. Neither register is altered, and the processor flags are not changed either.

Regular code equivalent to “AXS &20” would be:

STX &20

PHA

AND &20

STA &20

PLA

DCM This DECs the contents of a memory location, then CMPs the result with the contents of

the Accumulator.

Regular code equivalent to “DCM &20” would be:

DEC &20

CMP &20

HLT Halts the processor. Causes some sort of internal crash. No interrupts will be handled, the

only way out is to wibble the RST pin in hardware. Because the exact operation of this

instruction is unknown, it might be preferable to set up dummy IRQ and NMI handlers and

then enter a recursive loop if you really want the processor to appear to be ‘halted’.

LAX This loads both the Accumulator and the X register with the contents of a given address.

Regular code equivalent to “LAX &DEAD” would be:

LDA &DEAD

LDX &DEAD

It is important to remember that these four instructions (four of many) are totally unofficial and operate as side

effects of other instruction decoding. They are not present on the CMOS versions of the processor, and it may

also depend on who manufactured that particular NMOS 6502...

But, if you do have them, then they might just provide an interesting little speed tweak!

Here are the additions to make to the opcodes.dat file.

; AccImmAbsZpaZpxZpyAbxAbyImpRelInxInyAbiEmuZpi

axs,0,--,--,8F,87,--,97,--,--,--,--,83,--,--,--,--

dcm,0,--,--,CF,C7,D7,--,DF,DB,--,--,C3,D3,--,--,--

hlt,0,--,--,--,--,--,--,--,--,02,--,--,--,--,--,--

lax,0,--,--,AF,A7,--,B7,--,BF,--,--,A3,B3,--,--,--

You’ll find a comprehensive list of the known “undocumented” 6502 instructions on-line.

6502asm user guide – prerelease version

page 6

Assembler commands

6502asm commands are all three letters long (except EQUx which is handled specially).

They look like processor instructions. This is intentional.

BOT <address> [FORCE]

This specifies the lower address of the assembly. If no address is specified, &0000 is assumed...

...unless the ROM command has been previously specified, in which case &E000 will be assumed.

Once BOT has been set, you cannot reBOT to a higher address unless you include the FORCE

option.

The FORCE option is primarily for use with ROM code where you want to denote a specific

address (i.e. &E000) as being the ‘bottom’ of memory and the start address of the output file ...

but you also wish to define labels in memory, such as in page zero.

You could use code such as:

ROM

ORG &0000

<define some labels here>

ORG &A000

<define some hardware-related labels here>

BOT &E000 FORCE

<ROM code goes here>

CNT "<file>"

The “continue” command will switch to processing the contents of the named file. You could use

this to ‘chain’ multiple sources to create one assembled file.

CPU [NMOS|CMOS]

This permits you to specify which processor you are assembling for.

Undefined – all instructions and addressing modes are valid (default behaviour)

NMOS – warnings will be given if CMOS instructions or addressing modes are

 encountered (but the instructions will be assembled)

CMOS – all instructions and addressing modes are valid

DCB <byte> also EQUB <value>

Include a byte value in the output.

DCS "<string>" also EQUS "<string>"

Include a string in the output. Several ‘codes’ may be embedded within the string, these are

described later on.

6502asm user guide – prerelease version

page 7

DCW <value> also EQUW <value>

Include a word (16 bit) value in the output, low byte first (6502-style).

DCZ "<string>" also EQUZ <value>

Include a zero-terminated string in the output.

FIL <count>, <value>

Insert <count> bytes (of <value>) into the output, to fill or pad as desired.

INF "<name>"

Load and embed the contents of the named file. You can use this to insert raw data or pre-

compiled code.

ORG

Set the value of “PC”, and where the assembly will write to next.

It is permissible to jump all around the addressing space, but for obvious reasons this is not to be

recommended.

Note that there are side effects – setting an address lower than that specified by BOT or higher

than that specified by TOP will update the respective marker. Bear this in mind if you ORG to a

low location after a ROM command.

ROM

The ROM command performs a number of actions that may be useful to quickly set up firmware

intended to be held in ROM or EPROM.

Initially, all bytes in the memory map will be set to the value &FF. This should permit faster

EPROM programming (as blank EPROMs are all-bytes-&FF, so the programmer will skip them).

Then, the following sequence is performed:

BOT &E000 ; ROM starts here (&E000-&FFFF = 8192 bytes)

TOP &FFFF ; ROM ends here

ORG &FFFA ; set up vectors

DCW nmi_vector ; NMI

DCW reset_vector ; RESet

DCW irq_vector ; IRQ

ORG &E000 ; back to start

It is then up to you to provide the labels (and code) for nmi_vector, reset_vector, and irq_vector.

6502asm user guide – prerelease version

page 8

The default base address, &E000, was chosen because it is the start point of the Amélie EPROM.

If this address is not suitable, you can easily do something like:

ROM

BOT &A000 FORCE

ORG &A000

TOP <address>

This specifies the higher address of the assembly. If no address is specified, the address after the

last instruction assembled is assumed...

...unless the ROM command has been previously specified, in which case &FFFF will be assumed.

Once TOP has been set, you cannot reTOP to a lower address. This is important as you cannot use

the ROM command to set up an arbitrary EPROM environment for, say, BBC paged ROMs. An

example of how to do this would be something like:

BOT &8000 ; set the bottom

ORG &8000 ; go there

FIL &3FFF, &FF ; fill the area with &FF bytes

TOP &BFFF ; affirm the end location

 ORG &8000 ; back to the beginning

; code follows, i.e.:

DCW entrypoint_language

DCW entrypoint_service

 DCB %11100010 [...etc...]

It is important to note that the values set by the BOT, ROM, and TOP commands directly relate to the range

saved in the output file.

For example:

BOT &0000

TOP &FFFF

will cause 65,535 bytes (64K) to be saved to file.

BOT &F000

INX

will cause one byte to be saved to file.

ROM

will cause 8192 bytes to be saved to file.

6502asm user guide – prerelease version

page 9

Ways of specifying a numerical value

When you need to specify a value, say a constant or an address, you can use:

Base 16 (hex):

&12 This is the Acorn way.

$12 This is the Pascal / Commadore way.

0x12 This is the C way.

The DOS (“12h”) and VisualBasic (“$H12”) forms are not supported.

Base 10 (denary):

123 As expected...

Base 2 (binary):

%1100 The Acorn way.

To recap, prefix with ‘&’ for hex and ‘%’ for binary. No prefix is necessary for denary numbers.

You can also use ‘$’ and/or ‘0x’ to prefix hex values if you are used to doing it that way. Note that the C

style, if you’ve never used C before, is ‘0x’ which is zero-ecks (not oh-ecks).

Alternatively, in the case of addresses, simply define a label and then use the name of the label. For example:

.never_ending

 JMP never_ending

In-line calculations

When you are assigning values, such as:

LDX #43

you can also use calculations. Calculations are marked using square brackets. Within these square brackets

you can enter a sum which is evaluated left-to-right, like:

LDX #[12+42-11] ; evaluates to be 43!

The available mathematical operators are:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (remainder after division)

6502asm user guide – prerelease version

page 10

The available logical operators are:

>> Logical shift right

<< Logical shift left

|| Logical OR

&& Logical AND

^^ Logical Exclusive OR

This will have slightly more use when it comes to inserting the addresses of things, such as:

TXA

STA buffer

TYA

STA [buffer + 1]

The calculation works by extracting the parts of the calculation to a ‘stack’, so our example [12+42-11]
would break down to be:

location: 0 1 2 3 4 5 6 7

value: 12 + 42 - 11] x x (‘]’ meaning end and ‘x’ meaning unused)

The stack can hold up to eight items (locations 0 to 7). More complex calculations will be faulted.

Addressing modes (NMOS)

This is a look at the addressing modes provided on the 6502 processor. It is given as a useful reference, and

also to describe how to format instructions that use a particular addressing mode.

Implicit (or Implied) addressing

<instruction>

No value is required. Memory may be referenced, but it will be done in ways you cannot control.

For example PHA will push the contents of the accumulator to the next free stack location.

You can set up the stack, but not with the PHA instruction...

Examples:

CLI

RTS

Accumulator addressing

<instruction> A

The operation is performed with/to the accumulator. The ‘A’ is important, unlike some

assemblers 6502asm will not ‘guess’ whether or not you meant to use the accumulator addressing

mode.

Examples:

ASL A

ROR A

6502asm user guide – prerelease version

page 11

Immediate addressing

<instruction> #<value>

The value is directly provided. Note the ‘#’ character before the value; if it was not there then it

would be taken as an address – the ‘#’ is important!

Examples:

LDA #123

Relative addressing

<branch instruction> <offset|label>

Relative addressing is used only with branch instructions. The second byte of the instruction

establishes a branch point which may be -128 to +127 bytes away from the following instruction

(i.e. -128 to +127 bytes away from PC).

This is why you cannot BEQ across large expanses of code.

Examples:

BEQ <label>

BNE <label>

The assembler sorts out the offset, you don’t have to.

Absolute addressing

Zero page addressing

<instruction> <address>

The parameter to the instruction is a byte held at a fixed address.

If the address is less than &100, zero page addressing is used otherwise absolute addressing is

used.

Zero page addressed instructions can operate a lot faster, so careful use of page zero can be a

definite speed bonus.

Examples:

CMP &FE02 ; compare A with byte at &FE02

LDA &C5 ; load A from &C5 ==ZERO PAGE==

It is very important to note that all references to a label fall into this category of addressing. If the

label has been resolved before it is encountered in the code, then 6502asm will pick Absolute or

Zero page addressing as is deemed appropriate.

However, if the label has not been seen before it is used (i.e. you are assembling a forward

branch) then 6502asm will always treat this as an full absolute (not zero-page) address.

In 99.9% of cases, this behaviour is correct, however if the label is later defined as being Zero

Page, then 6502asm will then assemble the code as if it was Zero Page and everything else will be

wrong, your software will crash, etc. This is only of concern if you are assembling code to be

located or used within Page Zero itself. Simply pre-define all of the labels first, and then go back

and assemble code. Don’t use forward references.

6502asm user guide – prerelease version

page 12

Indexed absolute addressing (aka Absolute, X or Y addressing)

Indexed zero page addressing (aka Zero page, X addressing)

<instruction> <address>, X
<instruction> <address>, Y

This behaves much like the Absolute / Zero page addressing previously described, however in

addition to retrieving the address, the contents of the X or Y register (as applicable) is added.

For example:

LDX &DD ; set X to &DD

LDA #&F000, X ; load A from (&F000

 ; + &DD)

The zero-page versions work entirely in zero page, so adding &FF to &FF won’t work. The

effective address would be &FE.

Examples:

CMP &FE02, Y ; compare A with byte

 ; at (&FE02 + Y)

LDA &C5, X ; load A from &C5

 ; ==ZERO PAGE==

Zero page, Y addressing

LDX <value>, Y
STX <value>, Y

There is, generally, no such thing as Zero page, Y addressing as the zero page indexed addressing

uses the X register.

The specific exception to the rule is when we are loading and saving the X register – we can’t

indirect it with itself!

Examples:

LDX &0F, Y

STX 123, Y

Indexed indirect addressing (pre-indexed)

<instruction> (<zero page address>, X)

Ready? The contents of the second byte of the instruction are added to the X register. This then

gives us an address in page zero where we can expect to find our ‘real’ target address.

This addressing mode is mainly used for interfacing multiple peripherals. You can store a list of

pointers in memory, and by using base address + index, you can read data from each

peripheral in turn simply by repeating the same code using the index register to select which to

load.

6502asm user guide – prerelease version

page 13

Example:

LDA (&12, X) ; load A from

 ; address pointed to

 ; at (&12 + X)

Indirect indexed addressing (post-indexed)

<instruction> (<zero page address>), Y

This time... The second byte of the instruction points to an address in page zero. We add this new

address to the contents of the Y register to obtain our ‘real’ target address.

Example:

ORA (&12), Y ; ORA with byte at

 ; address pointed to

 ; by:

 ; (Y + value at &12)

For a walk-through, refer to the memory dump below:

First we set Y to &02.

The LDA command retrieves the value “&0007” from address &0005.

So now the LDA looks to &0007 + Y, which is &0009.

The value actually loaded into the accumulator is &03.

Where indexed indirect could be used to interrogate multiple peripherals, the indirect indexed is

more suited to reading and writing multiple registers within one peripheral.

Consider the 6522 VIA. It contains 16 registers:

 0 ORB 5 T1C-L 10 SR

 1 ORAh 6 T1L-L 11 ACR

 2 DDRB 7 T1L-H 12 PCR

 3 DDRA 8 T2C-L 13 IFR

 4 T1C-L 9 T2C-H 14 IER

 15 ORA

If the parameter address pointed to the base address of the 6522 in the memory map, you could

use the index register to select which register to read. On the BBC micro, the user port is at

&FE60 to &FE6F; so we could indirectly index memory locations &FE60 + Y...

6502asm user guide – prerelease version

page 14

&0000 A4 02 LDY &02

&0002 B1 05 LDA (&05), Y

&0004 60 RTS

&0005 07 ???

&0006 00 BRK

&0007 01 02 ORA (&02, X)

&0009 03 ???

&0000 A6 02 A1 05 60 07 00 01 02 03 ª·í·‘····

Absolute indirect

JMP (<address>)

This mode is only available for a specific type of JMP instruction.

The contents of the address pointed to are read, and this in turn becomes the JMP address.

For example:

If &F000 was &A000...

JMP (&F000)

JMP will look at &F000 and ‘see’ &A000. Instead of jumping to &F000, it will indirect, and

we’d jump to &A000.

Example:

JMP (&0F00)

Amélie’s BIOS makes extensive use of this for interrupt and event vectoring, by indirecting

though a known location, we only add a few extra cycles (and waste five bytes). The upside is that

the application code can intercept the interrupt handling at various points.

Additionally, if you look at the BIOS startup code (from rst_vector), you’ll see that the BIOS sets

up a dummy “just in case” interrupt handler while the hardware is set up, and then the proper

interrupt handler is put in place after the hardware has been initialised. Without indirect jumps,

such things would not be possible.

Zero-page absolute indirect

<instruction> (<address>)

This mode is only available on the CMOS versions of the processor. The address specified is a

location in zero page which points to a two-byte effective address.

This is provided on the 65C02 for use with ADC, AND, CMP, EOR, LDA, ORA, SBC, and STA.

Support for four-byte instructions

The 65C02 provides use with a number of instructions that are correctly four characters in length:
BBR0 BBR1 BBR2 BBR3 BBR4 BBR5 BBR6 BBR7 BBS0 BBS1 BBS2 BBS3 BBS4 BBS5 BBS6 BBS7
RMB0 RMB1 RMB2 RMB3 RMB4 RMB5 RMB6 RMB7 SMB0 SMB1 SMB2 SMB3 SMB4 SMB5 SMB6 SMB7

It was intended that there be a translation table to read these four-character instructions and convert them to

three-character versions. This is still ‘in the works’ as it tended to break a lot more than it would have fixed

(because of the assumption of three-character instructions, which was fine for original 6502 code).

There is a work-around. The assembler will recognise these instructions if you omit the middle letter, so that

an instruction such as BBR3 will become BR3. Here is the above table in 6502asm-friendly format:

BR0 BR1 BR2 BR3 BR4 BR5 BR6 BR7 BS0 BS1 BS2 BS3 BS4 BS5 BS6 BS7

RB0 RB1 RB2 RB3 RB4 RB5 RB6 RB7 SB0 SB1 SB2 SB3 SB4 SB5 SB6 SB7

If you absolutely require the four-character versions to be supported, please get in touch.

6502asm user guide – prerelease version

page 15

String codes

You can ‘embed’ special sequences within strings:

\r Insert an &0D byte (linefeed)

\n Insert an &0A byte (newline)

\" Insert a double quote

\' Insert a single quote

\x## Insert a hex code directly (i.e. \x07 for TTY bell)

\d### Insert a decimal code directly (i.e. \d169 for © symbol)

\0 Insert a null byte

\\ Insert a backslash

This has been taken from the C method of inserting codes into strings...

My so-called example

We will create a file called “mybios.s65”. It contains a very stripped-down EPROM image, basically to save

cluttering up this document with a lot of trivialities!

 ; example BIOS code (based upon Amélie)
 ;
 ; To be compiled with 6502asm
 ; http://www.heyrick.co.uk/amelie/
 ;

 ROM ; base & org = &E000, top = &FFFF,
 ; inserts vector links

 ; P A G E Z E R O
 ; =================
 ;
 ; Data labels live here, but no tables or code can reside here...

 ORG &0020 ; at +32 we have various BIOS locations

 ; WATCHDOG:
 ; Application code MUST periodically reset this to zero.
 .watchdog
 DCB 0

 ; ******* much stuff omitted *******

6502asm user guide – prerelease version

page 16

 BOT &E000 FORCE; force low address to be &E000, EPROM start

 ; The above is important!
 ; Because we are assembling ROM code, we want only &E000 to
 ; &FFFF to be saved, but we also want to set up locations
 ; in page zero so we can refer to them by label.

 ; B I O S C O D E F O L L O W S
 ; =================================

 ORG &F000 ; The BIOS sits in the second half of the EPROM

 ; R E S E T The "reset_vector" label is required by
 ; --------- required by the ROM instruction

 .nmi_vector ; because NMIs are not used in this example...
 .reset_vector
 NOP
 SEI ; should be already, but no guarantees
 CLD ; undefined at NMOS 6502 init

 LDX #&FF ; reset stack pointer
 TXS
 ; we’d reset hardware devices here too
 ; and suspend all sources of IRQs

 ; ******* lots snipped *******

 CLI ; Re-allow interrupts

 ; BIOS startup complete! Call application...
 JMP app_code_entry

 .irq_vector
 NOP
 RTI ; In reality, a LOT more would happen!

 CNT "appcode.s65" ; Continue in the "appcode" file.

Meanwhile the “appcode.s65” file will look like:

 ; A P P L I C A T I O N C O D E v0.01 2001/01/01 at 01h01
 ; ===============================

 ORG &E000 ; The application code is the first half of the EPROM

 .app_code_entry
 JMP app_code_entry ; do nothing, it's just an example!

This is just to give you an ‘idea’ of the layout of the code. To make things tidier, the BIOS and the application

code are in separate files. This would also be the case if a debugger was included. In this manner it is possible

to mix and match parts; perhaps different application codes (depending on needs/features) using the same

BIOS? Perhaps debugging support in test versions but not release versions? More flexible than a giant single

source file.

To assemble, enter at the command line:

6502asm mybios.s65 mybios.img

6502asm user guide – prerelease version

page 17

For a successful assembly, the display will look like:

S:\Amélie>6502asm mybios.s65 mybios.img

6502asm v0.04 (11th June 2008) initialising...

Written by Rick Murray, email me at <heyrick1973 -at- yahoo.co.uk>

Assembling, pass 1...

Continued into file "appcode.s65"...

Assembling, pass 2...

Continued into file "appcode.s65"...

Saved 8192 bytes to "amebios.img" - &E000 to FFFF

6502asm v0.04 (11th June 2008) exited. Thank you for using this software.

Don't forget to check for newer versions and related software!

 http://www.heyrick.co.uk/amelie/

S:\Amélie>

The file “mybios.img” will now contain the assembled BIOS image; as a raw dump; suitable for use with
AmélieEm or burning into EPROM.

Error messages

ERROR: Unable to open input file. – you may see this regarding the output file

 Cannot open "<filename>" (error <error code>)
6502asm cannot open files specified using “long” names. Please use the DOS filename (probably

something like “APPLIC~1.S65”). The error code provided may give some clues to more

experienced users, if the reason for the problem is not evident.

ERROR: Unable to open opcode data table.
Is the “OPCODE.DAT” file present in the currently selected directory? If you are running

6502asm from a PIF or shortcut, ensure the “Working directory” is correctly set.

ERROR: Unable to allocate memory for opcode data table.
Free up some memory and try again...

Base address (&<address>) is higher than Top address (&<address>), cannot continue!
You’ve set BOT higher than the current TOP value.

Base address (&<address>) is same as Top address - nothing to save!
The end of the file has been reached and the bottom and top addresses match. Did you try to

assemble an empty file?

ERROR: Attempting to assign BOT to a higher address at line <line>.
 (use "BOT &xxxx FORCE" if this is what you meant to do)

As it says – use the FORCE option if you intend to reassign the bottom marker to a higher address.

ERROR: Unable to extend label array.
There isn’t enough free memory to add a new label definition.

6502asm user guide – prerelease version

page 18

ERROR: Memory allocation failure.
 Please free up an additional 72K and try again.

In order to begin assembly, 6502asm allocates a 64K block of memory at start-up. The additional

memory (it says 72K) is because if you are this short of memory, we’d better ensure we have

room for the opcode table and some labels...

Under MS-DOS™, you may also see:

Available memory is only <filename> bytes, need at least 73728 (72K)...
or:

Oops, total memory cockup!
This is because the DOS memory allocation scheme is really sucky. You may even get this on a

128Mb machine if you boot directly to DOS (not via Windows™).

ERROR: CNT command cannot open file at line <line>.
 (filename is "<filename>")

You cannot continue into the file specified as the file cannot be opened.

ERROR: Attempting to DCB a value larger than &FF at line <line>.
The DCB command inserts a byte, but you’ve specified a value that is too large to fit into a single

byte...

ERROR: Unknown EQUx at line <line>.
 Should be EQUB, EQUW, EQUS, or EQUZ (re: DCx)

The EQUx commands are simply aliases for the DCx commands. “EQU” alone has no meaning.

ERROR: Invalid count (<count>) in FIL command at line <line>.
 (syntax is "FIL <count>, <value>" - are the parameters transposed?)

You will probably see this if you wanted to write a number of null bytes, but put the parameters

the wrong way around; i.e.

FIL 0, 256

ERROR: Missing ',' in FIL command at line <line>.
Perhaps you only specified one parameter assuming a default state (like “FIL 32” would write

out 32 null bytes?).

ERROR: INF command cannot open file at line <line>.
 (filename is "<filename>")

You cannot insert the contents of the file specified as the file cannot be opened.

ERROR: Relative address to &<address> (<offset>) out of range (-128...127) at line <line>.
Due to the way relative addressing works, you can only branch to an address that is 128 bytes

before or 127 bytes after the address of the following instruction. The ‘<offset>’ lets you know

what the range calculated was, in case it is something you could fix with a little bit of jiggling,

like an offset of -130 bytes...

ERROR: Unexpected end of calculation at line <line>.
Calculations must end with the ‘]’ character.

ERROR: Division by zero in calculation at line <line>.
Obvious.

6502asm user guide – prerelease version

page 19

ERROR: Calculation too complex at line <line>.
The calculation ‘stack’ can only hold eight discrete items. Every number and operator is an item

in the stack, thus [1+2+3] is six items. Why six? Don’t forget the end-of-calculation marker.

ERROR: The instruction "<instruction>" is not recognised.
 (at line <line>)

You have entered something that is not understood as a valid instruction or pseudo-instruction.

A common cause of this is forgetting the period before labels, for example:

mylabel

will be parsed as the instruction “myl”, which is not a valid instruction, hence this error message...

ERROR: Value is too large at line <line>.
An eight bit (0-255) result was expected.

ERROR: Unable to resolve label "<label>" (at line <line>).
The label (or its definition) has been incorrectly typed, or has not been defined.

WARN!: Use of CMOS instruction when NMOS processor specified;
 "<opcode>" at line <line>...

You specified CPU NMOS and the assembler encountered a 65C02-only instruction.

ERROR: Unable to match opcode with addressing mode at line <line>.
 [lots of addition information output]

You should not see this error. It occurs if the addressing mode cannot be determined from the

input; possibly due to a damaged opcode data file, possibly due to really screwy input.

ERROR: DCS or DCZ command with no string parameter at line <line>.
If you use DCS or DCZ, you must supply a parameter, even if it is a blank parameter, like:

DCS ""

ERROR: String contains \d value greater than &FF at line <line>.
You can only insert bytes into strings, so the \d values can only range from 0 to 255.

ERROR: Unrecognised escape code "\<code>" at line <line>.
 (valid codes are \r \n \" \' \x## \d### and \0)

6502asm does not support all of the escape codes that are supported by the C programming

language, i.e. \alert, \backspace, \tab, \octal, \?, etc).

ERROR: Memory overshoot at line <line>, current address is already &<address>!
This occurs if the assembly would pass beyond the &FFFF addressing range of the processor. The

following snippet illustrates this:

ROM

ORG &FFFD

DCW &1234

DCW &5678

DCW &9ABC

#commands not yet implemented!
You cannot currently use “preprocessor” commands such as #ifdef.

6502asm user guide – prerelease version

page 20

Known bugs

Lines are clipped at 80 characters. This means if a comment on a line exceeds this, it will be read in as part of

the next line, causing an error.

If you receive the error “unknown command 'xxx' at line <blah>”, where “xxx” is part of a

word in the comment, this is why.

In some cases, forward references to a label does not work. This is especially important in zero page where

the label is not already known to be in zero page, so it is assumed to be an absolute address. Define zero page

labels first, then ORG back...

No other bugs are known about.

That doesn’t mean there aren’t any... :-)

Licence

I, Richard Murray, permit you to use 6502asm according to the following conditions:

1. This software, source, and documentation are copyright: Copyright © 2004-2008 Rick Murray

2. Source modifications must be reported back to me.
All copyright and URL displays must be retained.
If you release your modified version, it must be under these same conditions and you must also state clearly, both in
the documentation and on-screen that the user is not using the official release of 6502asm.

3. This software (and source) may be re-distributed, provided the end-user can access it anonymously and at no cost.
For example, if I were to call your BBS (or connect to your portal), I expect to be able to download this immediately,
from the ‘Guest’ login.

4. If this software is not supplied for free (including magazine cover-mounts, compilation CD-ROMs, etc) then I expect
either a freebie or profit participation, at my discretion. This also includes ‘bundling’ this software with or within a
commercial application.
The definition of “commercial” is: something for which the user must pay (directly or indirectly)

5. If any part of the source is used in a third-party application, condition #4 applies to that as well. If this source is used
in a “free” application, then simply provide a credit (with URL link, if possible) in an ‘info’ window or some other
form of on-screen message.

6. This software is supplied as-is, and comes with no warranty or guarantee that it will be suitable for your needs or that
its operation will be error free. I can accept no liability for loss or damage through incorrect use or incorrect
behaviour of this software. Please report all problems to me.

7. Your “sole remedy” in case of problem is to contact me by email regarding the problem that you are experiencing. I
may then provide a work-around or updated version in order to resolve your problem.
No official end-user support is provided, nor can it be expected. You did not pay for this software, and source code is
supplied. I will help out where I can, but please note that I have other stuff happening – it’s called “having a life” and
it’s a whole new experience for me! :-)

8. Please note that this source code has not been released under the GNU Public Licence (“GPL”). Furthermore, I
expressly prohibit any GPLisation of this source code in any way, shape, or form.
Remember – the GPL is just another licence and it has no legal rights or special privileges that allow it to “override”
or “replace” any existing licence unless the lawful owner of the source code permits this.
As lawful owner of this source code, I do not permit this.

My problem is not with the GPL, it is with numerous people that support the GPL and make it into something that it
is not; if I was completely against the principles of open source then I wouldn’t have bothered to release the source
code. Some people may object to my referring to this as “open source” while putting conditions on its use. I apply

6502asm user guide – prerelease version

page 21

these conditions firstly to benefit the end-user, so that they will (hopefully) encounter the correct and up to date
version and not spin-offs; and secondly to benefit myself, as I’ve been ripped off before and taken flak for problems in
software versions that were not my own. Once bitten, twice shy.

9. I am a British citizen living in France.
This entire software product, and all documentation, was created within the confines of département 35, France.
Thus, this software and its use is under the jurisdiction of appropriate French and European legislation.
The application of American law is expressly prohibited.

10. This software is enirely my own creation. I have used concepts (such as the “org” command) common in other
assembler, notably Acorn’s objasm and BBC BASIC II, but the actual implementation and source code is entirely
my own. I’m not going to discuss the appalling crap known as “infringement of software patents”. Such nonsense,
very thankfully, is untenable within the European Union... let’s keep it that way!

Them’s the rules.
If you don’t like them, you know what you can do about it...

Contact

You can email me at:

heyrick1973 -at- yahoo -dot- co -dot- uk
I request that you do not make this email address ‘public’ with the ‘@’ and the ‘.’; and

certainly do not write it in a newsgroup posting! At all!

The Amélie project can be found at:

http://www.heyrick.co.uk/amelie/

Misc

6502asm was mostly written while sitting in bed feeling ill. Ironically, this document was first written about a

year after the first version of 6502asm was made... having just been to the dentist and having all four nerves

removed from a rear molar awaiting a crown fixing, and one nerve totally refused to stop, aaaaaaagh! The

revision was written whilst feeling very ill from eating something which is best described as “possibly

tainted”. It isn’t at all helpful that the toilet is the other end of the house through half a dozen doors and windy

passageways...

There must be something about 6502asm and pain. Gee, and silly little me thought that x86 code was where

true pain lay?

A technical achievement, the first working versions were written on a DOS-based laptop that used a 256

colour LCD panel comprising of four segments...and only segments 1 and 3 (top quarter height and middle-

lower quarter) worked! I listened to various CDs, mainly Evanescence’s “Fallen”, The Corrs’ “Unplugged”,

Alizée’s “Mes Courants Electriques”, and Laura Pausini’s “(Best Of) e ritorno da te”.

For the updates and the user guide, I listened to Dido’s “Life For Rent” album, as well as Sita’s “L’Envers Du

Décor” album. I also borrowed an album of Céline Dion’s from the library just to see what she did with her

cover of the song “First Time Ever I Saw Your Face”. A choice word might be “calamitous”.

Please excuse any typing errors – I was watching (again) “La Morte Vivante” (or “The Living Dead Girl” in

English), while writing this. :-)

6502asm user guide – prerelease version

page 22

Thanks to:
Ewen Cathcart for lots of help, support, and introducing me to something better than my old Erasure and Pet Shop Boys

tapes... I guess it could have been worse, it could have been Rick Astley...

Glenn Richards for hosting my website (and you thought it was just a bunch of pictures of Alyson Hannigan, right?) and

a lot of time chatting to me on the phone. I miss those days. And thank you also for laughing at me when I gave you

the wrong hex opcode for the NOP instruction. It is &EA. I know that now, and it’s come in useful recently!

John and Irene Williams for all those creature comforts that the French just can’t seem to get right; like tea that tastes like

tea, apple pies that taste like apple pies†, and cheese that tastes anything like cheddar! We won’t discuss the French

concept of baked beans... Thanks also to John for those eclectic bits of hardware, too!

† they’d lynch me over in Normandy for saying something like that, but to my mind any apple pie made without a

 Bramley or two is doomed to failure...

Zone Horror (formerly The Horror Channel) for a nice line-up of movies.

Find over 100 reviews at http://www.heyrick.co.uk/ricksworld/digibox/thcreview.html

Jean Rollin for surprising me with “Le Rose De Fer”, which is quite different from the other films of his, and is a perfect

example (to my mind) about what the Hollywood industry just doesn’t get about European film-making.

FilmFour for a nice line-up of movies designed to stimulate your mind.

Find over 100 reviews at http://www.heyrick.co.uk/ricksworld/digibox/film4review.html

The now-defunct (sob! sob!) AnimeCentral for... well, isn’t the name a big hint?

Find lots of information and reviews at http://www.heyrick.co.uk/ricksworld/anime/

Motorola and Rockwell for the 6502 processor.

Acorn for using the 6502 processor, and making the BBC micro which really shows it off (unlike, say, an Oric!).

EnVol for the French course, interesting new friends, and more besides.

SuperU for adding a 500g pack of tagliatelles fraîches to the “Bien Vu!” (budget) range, and also for having checkout girls

worth looking at... :-) One day, I might even be able to talk to them too! Thank you especially to a newly built local

SuperU which carries a decent amount of British food. Sadly no apple pies, but at least cheddar is sorted...

Sandrine, Françoise, and Tiphaine at the local library for trusting me to use their computers with a USB memory device,

and also permitting me to write my downloads to a multisession CD-R. Without that, none of this would be possible.

Anne-Marie, Caroline, Philibert, Odile, Mme Hervoir and others whose name I don’t know for their efforts to find me a job

and the help in negotiating the beaurocracy.

Mike, Jo, Lucy, and Emily... Now I’m no longer a Care Assistant, I can say that Doris was my favourite. I don’t think any of

the family were geek-inclined so they’ll probably never see this. No matter, it’s the thought that counts. :-)

I’m sure I’ve forgotten enough people to fill several more pages. Oh well, look at the end of helpfiles for some of my other software!

And finally...

Thank you for reading.

Rick; 2008/06/12

6502asm user guide – prerelease version

page 23

